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Rayleigh waves in electrostrictive dielectric solids 
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S U M M A R Y  
The possibility of the propagation of Rayleigb waves in an electrostrictive dielectric medium is investigated. It is 
shown that such waves can propagate, but they induce some body forces and surface tractions. 

1. Introduction 

Though the theory of the effect of electrostriction on dielectric solids is known [1, 2, 3 3 for 
some years past, the solution of particular problems based on the theory seems to be rather 
rare [4, 5]. Recently, Paria [6] has solved some problems including Love waves. In the present 
paper, the possibility of the propagation of Rayleigh waves in such media is investigated. The 
mathematical technique used here appeals to the linear theory of elastic solids even though 
the present problem is a non-linear one. It is shown that Rayleigh waves can propagate, but 
they induce some body forces and surface tractions. 

2. General theory 

We consider an electrostrictive dielectric solid whose elastic and electric properties are homo- 
geneous and isotropic when there is no stress or no strain. When deformation is produced, the 
electric properties may become anisotropic, and in such situations the coefficients ofanisotropy 
depend upon the strain developed within the medium. 

In such media, the stress tensor a~j is related to the strain tensor eij and the electric field Ei as 
[3] 

aij = 2ekkg~ij + 2#eij + al Ei Ej + bl E,,Em6ij (2.1) 

where the symbols have their usual meanings. By definition, we have 

eij = �89 (ui,j + uj, i) (2.2) 

In an anisotropic medium, the electric displacement D~ is related to E~ as 

Di = k i j E j  (2.3) 

where the anisotropic coefficients k~j under isothermal conditions are given by 

kij  = kc~ij d- K 1 eij q- K 2 ekkc~ij . (2.4) 

The constants K, K 1 and K 2 a r e  characteristic for the electrostrictive property and are deter- 
mined experimentally. It may be shown that [3] the constants a 1 and bl in (2.1) are expressible 
in terms of these quantities as 

al = 2 K - K ~ ,  bl = - ( K + K 2 ) .  (2.5) 

The stress equations of motion are 

&r ij c32 ui (2.6) 
~Xj -[- p XI  = p ~t  2 ' 

and Maxwell's electrical equations are 
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curl E = 0 ,  (2.7) 

div D = 0 .  (2.8) 

Equations (2.1) to (2.8) are the fundamental equations. They are to be solved under prescribed 
electrical and mechanical boundary and initial conditions. 

3. Rayleigh waves 

We consider a semi-infinite medium bounded by  the plane z = 0, and the positive direction of 
the z-axis is taken into the medium. We consider the possibility of the propagation a surface 
wave of the Rayleigh type such that the disturbance penetrates only a little into the interior. 
Let the waves propagate parallel to the x-axis with velocity c. As in the purely elastic problem 
we assume that the displacement components are 

U 1 = - -  i (s e -  ~ + Ab  e -  b~) ei~(~- a) ,  

u2 = O, (3.1) 

u 3 = (a e-"~ + As  e -  bz) ei~(~-,) ,  

where i = ~ / - 1 ,  a >0,  b >0,  and c is the wave velocity. In (3.1), we consider only the real 
parts. The coordinates and displacements may be taken as dimensionless. 

By (2.2), the strain components are 

ea i = S (S e -  ~ + A b  e -  bz) eiStX- ct) , 

e33 ----- -- ( a2 e -  az + Asb  e -  b~) eiS(x- m ,  

i 
e13 = e31 = ~ [2sa e -az +A(b  2 + s  2) e -b~] e/s(x-c') , 

e22 = 0 ,  et2 = 0 ,  e23 = 0 .  

The dilatation ekk is given by 

ekk = (S 2 -- a 2) e -  ~z eiS(~- m.  

From (2.4) we get 

kl 1 ~--- K - { (b 2 S 2 + K 2 a 2) e -  az - -  A b s K  1 e -  bz} eiS(X- ct), 

k 2 2  = K + K 2 (S 2 - -  a 2) e-"Z eiS(X-co, 

= K + { (b a + s e -  _ A b s l q  e -  e , 

i K~ {2sa e -  bz + A (b 2 + s 2) e -  b2} eiS(~-.), k13 = k31 - 2 

k12 = 0 ,  k23 = 0 ,  

where 

b 2 =  _ ( K  1 + K 2 ) .  

To satisfy (2.7) we take 

E = - grad ~b 

and assume that ~b is independent of y. Then (2.3) gives 

D1 = - k l 1 4 a x - k x 3 C ~  , 

D 2 = 0 ,  

D3 = -k3aq~x-k33qS~ 

where ~b x and ~b~ are the derivatives of ~b with respect to x and z respectively. 
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Using (3.4) and (3.6)in (2.8) we get 

K (4)~ + 4)~z) + [AbsK1 (4)~ - 4)=) e -  b~ 

- {  (b2s2 + K2a2)4 )~- (b2a2  + K2s2)4)~}e -"z 

+iK1 {2sae-~=+ A(b2 +sZ) e-bZ} 4)= 

- i  {sb2(s2-aZ)e-a~ + �89 b ( b 2 -  s2)e -b~} 4)~ 

-}- {ab 2 (s 2 - -  a 2) e-  "~ + �89 1 s (b 2 - -  S 2) e-  b~} 4)~] 
• eis(x - ct) = 0 .  

Let us assume 

4)(x, z, t) -- 

(3.7) 

4 ) . ( z ) e  �9 (3 .8)  
n = 0  

Inserting this expression for 4) in (3.7) and equating the different coefficients of e i"stx-m to 
zero, we get the following system of equations to determine 4),, where 4)', and 4)',' are the first 
and second derivatives respectively of 4), with respect to z. 

4); = 0 ,  

K (4)'1' - s 2 4)1) + {ab2 ( $2 - -  a2) e-az _~ a A K  1 s (b 2 - s 2) e-  bz} 4)~ = 0 .  (3.9) 

K [4);'+ 1 -- (n + 1)2 s 2 4), +1 ] -- AbsK1 (4)• + n z s z 4),) e - bz 

+ { (b2 s 2 + K2 a 2) n 2 s 2 4), + (b 2 a 2 + K 2 s 2) 4)"'} e -  az 

- K 1 {2sa e- , z  + A (b z + s 2) e-b=} ns4)', (3.10) 

+ {sb2 (s z - a 2) e -  ~ + ~ A K I  b (b e - s 2) e -  b~} nsO, 

+ {ab2(s2-a2)e-~=+�89 4)'. = O, 

where n -- 1, 2, 3 . . . . .  
Let the electric potential  be prescribed on the surface z =  0 as 

4) = Vei~(~-m (3:11) 

and let 4 )~0  as z ~ o o .  This implies the condit ions 

4 ) o = 0 ,  4 ) a = V ,  4 ) 2 = 4 ) 3 = . . . = 4 ) , = . . . = 0 ,  at z = 0 ,  (3.12) 

and 4)i~0 ( i=0,  1; 2 . . . .  ) as z ~ o o .  
Then, from (3.9) we get 

4)0 = 0 ,  4)~ = Ve - ~ .  (3.13) 

F r o m  (3.10), we obtain 

V s ( s - a )  [ e-~z e- 'Z] e -~z 
4 ) 2 -  K ( 3s +a)  { b 2 a + ( b 2 - K 1 ) s }  - 

(3.14) 
K1 A s ( s - b )  V [ e - ~ - e  -bz] e - ~  
2K  

Similarly, the other functions 4)3, 4)4 . . . .  may  be calculated. It is found that  4)2~0 as K 1 -+0, 
K2-+0 (i.e., b2~0).  Thus, 4)2 represents the first order approximat ion to the effect of the 
electrostriction on the potential distribution, while 4)3, 4)4 . . . .  are higher order effects. 

Using (3.2), (3.3) and (3.5) in (2.1), we get the stress components  as 

0-11 = [2 (s 2 -- a z) e-"~ + 21is (s e -  ~ + Ab e -  b~) ] e~S~- ,) 

+(a l  +bx)4)2 + b  1 4)z a ' 
0 .22  = /~(S 2 _aZ)e-aZ ea(X-,) + b 1 (4)2 +4)2), 

O ' 1 2 = 0 ,  
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a31 = a13 = I~i[2sae-aZ + A(b  2 +s2) e -bz] ei~(x-a) + a l  ~,,(9= , 

0"32 ~ 0"23 = 0 , 

0"~3 = [,~ (s  ~ - a ~) e - a= _ 2 , ,  ( a  ~ e -  a= + A s k  e - ~ ) ]  e ' s ~ -  ~) 

+ b  I q~2 + ( a l  q_ b l )  q52. (3.15) 

As in the purely elastic problem, let us assume that the surface z = 0 is free from tractions arising 
from mechanical  displacement.  This implies that  the coefficients of exp {is ( x -  ct)} in o-31 and 
a3a in (3.15) are zero when z = 0 .  Thus  

2sa+ A(b2 + s 2) = O, 2(sZ--aZ)--21.t(a 2 + Asb) = 0 .  (3.16a) 

Eliminating A we get 

(b 2 + s 2) { (2 + 2/ ,)a 2 - 2s 2 } = 4/~s 2 ab.  (3.16) 

Using (3.15) and (3.5) in (2.6), it is found that the equat ion corresponding to u2 vanishes iden- 
tically with X 2 = 0, while the other  two equat ions are satisfied if 

a = s  1 - c2 j , b = s  1 - ~ 2 2 J  ' (3.17) 

where 

1 
X 1 = _ _ [2(al+bl)(o~cf lx~+(a~+2b,)(o~c~=+al~b~(o~],  

P 

1 x ~ -  
p 

_ _ _ [al  q~x~q~zW(a I +2bl)(O~CP~z+2(al+bl)(oz(o=],  

(3.18) 

c2 _ 2+2/.z , c 2 = -./~ (3.19) 
P P 

Since a and b have been assumed to be real and positive, we get from (3.17) and (3.19) the con- 
dit ion 

C ~ C 2 ~ C  1 . 

Using (3.17) and (3.19) in (3.16), we get the frequency equat ion for the determinat ion of c as 

(2 - a) 4 = 4 (1 - a 2) (1 - ma 2) (3.20) 
where 

c c22 (3.21) ~ = - - ,  y n = _ _ .  
C 2 C 2 

Equat ion  (3.20) is identical with the frequency equat ion for Rayleigh waves in a purely elastic 
medium. 

Thus, it is possible for Rayleigh waves to propagate  in an electrostrictive dielectric medium. 
However ,  the electric field introduces the body  forces (3.18) and the surface tractions a3~ (0) 
and a33 (0) in (3.15) where only the contr ibut ions  due to q5 are to be calculated for this purpose.  

4. Approximate calculation of body forces and surface tractions 

Using (3.8), (3.13), and (3.14) in (3.18), and keeping only the first powers in K 1 and K2, we get 
the induced body  forces as 

i V2 $2 X1 = - e -ZSz[Ale  a z { 6 ( a , + b l ) s Z - ( 5 a a + 6 b , ) s a - - a ,  a2} 
P 
+B1  e-bZ {6(al + b , ) s 2 - ( 5 a l  + 6 b l ) s b - a l b 2 } ]  ei3~(x-a), 
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1 V2s2 2~z [A 1 e-a~ {(5al +4bl)s  2 - ( 3 a j  +2b~)sa-2(al +b l ) a  2} X 3 = - e-  
P 
+Ba e -bz {(5al + 4bl)s 2 - ( 3 a l  +2bl)sb-2(al  + bl)b2} ] e i3~<x-ct) , (4.1) 

where 

(s-a)  {b2a+(b2_K1)s} A 1 -  K(3s+a) 

K1 A ( s -  b) (4.2) 

Bn - 2K ' 

while A, a and b are given by (3.16a) and (3.17). Evidently Axe0 ,  B I ~ 0  as K1~0 ,  K2~0.  
From (4.1), it is seen that X1~0, X3~0  as K1---~0 , K2~0 .  This means that the induced body 

forces are first order effects of the electrostriction. If the dielectric is not electrostrictive, these 
body forces do not appear. 

From (3.15) we get the surface tractions at z--0 as 

(0"31)z : 0 = is2 V2 al [e 2is(x- ct) q_ {A n (s -- a) + B~ (s -- b)} e 3is(x -ct) ,  (4.3) 

(0"33)~:0 = S2 V2 [an e2i~cx-c')--2(al +bn){A1 (s-a)+B1 (s-b)} e3 i~-c~  

These surface tractions are induced by the potential amplitude V, and vanish when V=0. 
But they do not vanish when A a =0,  B 1 =0. This shows that they are present even when the 
dielectric material is not electrostrictive. 

5. Conclusion 

It has been shown that an electrostrictive dielectric material can propagate Rayleigh waves. The 
applied surface potential induces body forces and surface tractions. The body forces are not 
induced if the dielectric has not the property of electrostriction. The surface tractions are how- 
ever present even when the electrostrictive property is ignored. 
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